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Abstract

Under mild conditions on the distribution function F, we analyze

the asymptotic behavior in expectation of the smallest order statistic,

both for the case that F is defined on (-°o, +°°) and for the case that

F is defined on (0, «') . These results yield asymptotic estimates of

the expected optimal value of the linear assignment problem under the

assumption that the cost coefficients are independent random variables

with distribution function F.
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1. INTRODUCTION

Given an n x n matrix (a ) , the linear assignment problem (LAP), is

to find a permutation ^zS that minimizes E. , a. ... This classical^ n 1 = 1 lu^Ci, .

problem], which has many apolications . can he solveH pfficlentlv hv a

variety of algorithms (see, e.g., (Lawler 1976). It can be conveniently

viewed as the problem of finding a minimum weight perfect matching in a
-'. r

complete bipartite graph . Here we shall be concerned with a probabilistic

analysis of the value Z of the LAP, under the assumption that the

coefficients a are independent, identically distributed (i.i.d.)
ij

random variables with distribution function F. We shall be particularly

interested in the asymptotic behavior of

EZ = Emin^,_3
^i=l£i^(i) (D

n

Previous analysis of this nature have focused on several special

choices for F. In the case that a., is uniformly distributed on (0, 1),
-13

EZ^ = 0(1); the initial upper bound of 3 on the constant (Walkup 1979) was

recently improved to 2 (Karp 1984). In the case that -a., is exponentially

distributed , EZ = (n log n) (Loulou 1983)

.

We shall generalize the above results by showing that, under mild

conditions on F, EZ^ is asymptotic to nF (1/n) . The interpretation of :

this result is that the asymptotic behavior of EZ^/n is determined by

that of the smallest order statistic. In Section 2, we establish lower

and upper bounds on the expected value of this statistic, that may be of

interest on their own. In Section 3, we apply the technique developed

in (Walkup 19 79) to these bounds to arrive at the desired result. As we

shall see, the condition on F under which the result is valid, is in

a sense both a necessary and a sufficient one.



2. ORDER STATISTICS

Suppose that X. (1=1, ..., n) is a sequence of i.i.d. random

variables with distribution function F. It is well known that

X. d. F (U.), where the U. are independent and uniformly distributed

on (0,1), and where F~ (y) = inf {v|F(v')>y}. The smallest order

statistic (i.e., the minimum) of random variables Y. , ..., Y will
' —1 —

n

be denoted by Y,
—l:n.

We first consider the cast that

lim F"^(l/n) = -- (2)

under the additional assumption that

/|xJF(dx) < * . (3)

We start by deriving an upper bound on EX^
X • n •

Lenrnia 1 (F defined on (-°°,+°°))

n °°

EX, < F"^(^) (1-(1- -) ) + n (l-F(O))""^ / X F(dx) (4)
—1 :

n

n n
o

Proof : We observe that

EX, = E min {F (U, ) , ..., F (U )

}

—1 : n —

i

—

n

l:n
= EF ^(U, ) (5)

Let V. = max {U^, 1/n} (i=l, ..., n) . Clearly, EF-1(U^ .^)<EF-1(V^
.^)

Hence,

^^"'^^l:n)
^

F-l(l/n) Pr (V^^^=l/n} + U^^V^.J I ^ ^/^)
=

—1 :n

1 _, _,

F ^(1/n) (1-Pr {U, >l/n}) + n / F ^(x) (l-x)"" dx
l:n ,

1/n

(6)

-3-



Now (2) and (3) imply that the latter term is bounded by

1

/

F(0)

n / F ^(x) (1-x)" ^ dx <

-1 ^ -1
n (l-F(O))" / F (x) dx =

F(0)

n (l-F(O))" '
/ x F(dx). (7)

Together, (6) and (7) imply (4). D

Since l-F(O) < 1, we obtain as an immediate consequence that

lim inf —4^^^^ > 1 - - (8)

F (1/n)

To derive a lower bound on EX, of the same form (and thus an upper
—l:n

bound on EX, /F (1/n)), an assumption is needed on the rate of
-\L :n

decrease of F when X -> - <=°) . We shall assume that F is a function

of positive decrease at - °°
, i.e. , that

for some a > 1. It can be shown (De Haan & Resnick 1981) that this

condition implies that

In (lim inf F(-x)/F(-ax) ,,^.

a(F) = lim
:;

a-«° In a

exists and is positive." The condition is satisfied, for instance •

when (F(x) decreases polynomially (0 < oc (F) < «>) or exponentially

-4-



(11)

(ct(F) = «=) fast when x -> - °°. Condition (9) implies and is

equivalent with (De Haan & Resnick 1981)

1 F"^ (1/ay) ^lim sup ;—

^

— < »

y -^ ^ F-^ (1/y)

with a > 1. Again,

In (lim sup F~^ (l/ay)/F"^ (1/y)
lim ^—

i

'^^^^

a^ In a

can be shown to exist and to be equal to g(F) = l/c((F) .

Theorem 1 (F defined on (- ^, + °°))

EX
lim sup -1=" <

°° (13)
n^<° -1

F ^(1/n)

if and only if F is a function of positive decrease at - «=

with a(F) > 1.

Proof . We note that

EF~^(U ) = n / f"^(x) (1-x)''"-'- dx + n / f"-'-(x) (l-x)"""^ dx.

F(0)

(14) .

The latter term is bounded by

oo

n(l-F(0) )""'-
/ X F(dx) (15)

and hence

1

n / F "
(x) (l-x)"^

''" dx

lim g(0)

F ^ (1/n)

(16)

-5-



If nF(0) > 1, the former term is bounded from below by

F(0) _
n / F (x) (1-x)^ dx >

1 - F(0)

F(0)

/

1 - F(0)

1

/

1 - F(0)

nF(0)

/

1 - F(0) 1

n / F (x) exp(-nx) dx =

1 / F (x/n) exp(-x) dx +

1 / F"-^(x/n) exp(-x) dx (17)

The monotonicity of F Implies that, for large n, the latter term

is at least as large as

F ^(1/n) / exp(-x) dx (18)

1 - F(0) 1

Also, (11), a(F) > 1 and (Frenk 1983, Theorem 1.1.7) imply that there

exist constants B>0 and 6 e (0,1) such that for sufficiently large n and

X £ (0,1)

< -jlh^M. , B^-e (19)

F \l/n)

6f. (12)), so that, for sufficiently large n,

1 _1
/ F (x/n) exp (-x) dx 1 .g (20)

< B / X exp(-x) dx < «=

-6-



Together, (20) and (18) imply (13)

Now, suppose that (13) is satisfied, i.e., that

F(°> -1 n-1
n / F (x) (1-x) ^ dx

lim sup -, < °° (21)

F-^ (1/n)

If a < nF(0) , then

nF (a/n) / (1-x) dx > n / F "^(x) (1-x) dx (22)

and hence

lim sup ^±""1^1
.-= 0(— -, ^) (23)"^

F-\l/n)
l-exp(-a)

Hence (cf. (11)) F is of strict decrease with a(F) > 1, and all '

that has to be shown is that a(F) ?^ 1. Thus, it is sufficient to

show that a(F) = 1 implies that

1

1 = ^ (24)

-1 -1 -2
F "(x/n) dx / F (1/xn) x dx

lim sup

F ^(1/n) F (1/n)

In (De Haan & Resnick 1981) it is shown that there exists a sequence

n, and a function '^(z ) > z (z > 1) such that

F (1/xn ) 25)
li'\-«. —, — = ^(x) > X

^'^^

F~\l/n^)

for almost every x > 1, i.e., except in the (countably man>) points x

where ^ is discontinuous. But this implies the existence of a sequence

X , with X £ (2m,2m+l), such that for all N
m m

-7-



-1 -2
/ F (1/xn ) X dx

1
^

> Z ^ ^ (X )
(-i ^

)
lim sup, ; m=l m X x

, ^

'm=l
\^

2m+2
J

(26)

which goes to + » when N -> ^ . D

Lemma 1 and Theorem 1 imply that, under conditions (2) and (3), the

following statements are equivalent:

(i) F is a function of positive decrease at - «> with a(F) > 1;

(ii) 1-e < lim inf —l:n < lim sup —l:n < <=°.

n ^- «> —^, '^n ^- "° —^
F ^(1/n) F (1/n)

Now let us deal with the (much simpler) case that

lim F~\-^) = (27)
n -> « n

No additional assumption such as (3) is needed.

Lemma 2 . (F defined on (0, =°)

)

EX, > F"^ ^—) (1 - —)"
(28)—1 : n n n

Proof: Define

, 1/n if U, > 1/n
—1 (29)

if U. < 1/n—1

Then

EX, = EF Nu, ) > EF Sw, ) = F ^(-) (1 - h""

.

(30)
—l:n —l:n —l:n n n

D

Again, let us assume that F satisfies (11), or that, equivalently

,

lim inf ^ ^}^\ .:. 1 (31)
xiO F(ax)

-8-



for some a < 1. Thus, F being defined on (0, °°) , the function is

assumed to be of positive decrease at 0.

Theorem 2 (F defined on (0, «>) )

.

EX
lim sup

~^-"
< oo (32)

F (1/n)

if and only if F is a function of positive decrease at 0.

Proof :

1 _, ,

EX, = n / F (x) (1-x)"" dx <
-l:n Q

1 _1
n / F (x) exp (-nx) dx =

^ -1
/ F (x/n) exp (-x) dx (33)

As before, we split the integral in two parts, corresponding to

x e (0,1) and x £ (0,1) and x e (l,n) respectively. The first part is

bounded by

F n/n) / exp (-x) dx (34)

As in the proof of Theorem 1, we can bound

-1
/ F (x/n) exp (-x) dx

1
_

(35)

F \l/n)

-9-



by invoking (12). This yields the proof of (32).

Conversely, (32) implies that, since for < a < 1

1 1 ^ ,

F~^(a/n) / (1-x)""-^ dx < / f"-^(x) (l-x)"""^ dx, (36)

a/n

we may conclude that

F"-^(a/n) / (1-x)" dx

T . a/n < <=° (37)
lim sup ;

F \l/n)

which leads directly to (11). D

Hence, in the case that (2 7) holds, we have the following two

equivalent conditions:

(i) F is a function of positive decrease at 0;

1
EX^ EX

(ii) - < lim inf ^ -^^ ^ lim sup —Lii^ < -

F -^(1/n) F ^(l/n)

We note that no condition on a(F) occurs in (i) . We also note that

the case that F is defined on (c, °°) for any finite c can easily be

reduced to the above one.

icroo

-10-



3. THE LINEAR ASSIGNMENT PROBLEM

Our analysis of the linear assignment problem is based on a

technique developed in (Walkup 1981) . Very roughly speaking, this

approach can be summarized as follows: if in a complete, randomly

weighted bipartite graph all edges but a few of the smaller weighted

ones at each node are removed, then the resulting graph will still

contain a perfect matching with high probability. In that way we

derive a probabilistic upper bound on the value Z of the LAP.

More precisely, assume that the LAP coefficients a^. . (i, j = l, . . . ,n)

are i.i.d. random variables with distribution function F. It is

possible to construct two sequences b.. and c.. of i.i.d. random

variables such that

a, . 1 min {b . .
, c,.} (38)-ij - -ij -ij

Indeed, since we desire that Pr {a. . ^ x} =

Pr {min {b.., c..} > x} = Pr {b.. > x} Pr (c,. > x}, the common
-ij -ij -ij -ij

distribviLion function F of b . . and c. will have to satisfy

l-F(x) = (l-F(x))^ (39)

so that

F"^(x) = F"^(l-(l-x)^) (40)

For future reference, we again observe that b . . d F~ (V ) and
-iJ - -ij

c. =F (W..), where V.. and W.. are i.i.d. and uniformly distributed-ij -ij -ij -ij ^

-11-



on (0,1). If we fix any pair of indices (i,j), then the order

statistics of V (j=l, ..., n) are independent of and distributed

as the order statistics of W..(i=l, ..., n) ; we shall denote these

order statistics bv V, < V. < ... < V and W, < W^ <... < W
' —1 : n —/ : n —n : n —1 : n —2 : n —n : n

respectively.

Now, let G be the complete directed bipartite graph on S={s^ , ..., s }

and T={t , .... t } with weight b.. on arc (s^ , t.) and c.. on arc
n n -ij i J -11

(t., s.). For anv realization b . . (co) , c . . (w) , we construct G (d,w) by
J 1 iJ iJ n '

removing arc (s., t.) unless b..(a)) is one of the d smallest weights

at s. and by removing arc (t., s.) unless c . .
(w) is one of the d

smallest weights at t . . Let us define P(n,d) to be the probability

that G (d) contains a (perfect) matching. A counting argument can

now be used to prove (Walkup 1981) that

1-P(n,2) < i (41)
jn

(d+l)(d-2)
1-P(n,d) < ^ (-^) (d>3) (42)

iZ2 n

We use these estimates to prove two theorems about the asymptotic value

of EZ. Again, we first deal with the case that

lim F~-'-(l/n)= -«> (43)

under the additional assumption that

/|xlF(dx) <«> (44)

-12-



Theorem 3 (F defined on (-°°, -H»)

)

If F is a function of positive decrease at -°° with a(F) > 1, then

3 2 -, . . r ^- -, • ^- < °° (45)n ^ ) < lim inf < lim sup ^_ ^^-''

2e^ nF (1/n) nF (1/n)

Proof. Since

EZ > nEa, (46)— —1 :n

the upper bound in (45) is an immediate consequence of Theorem 1.

For the lower bound we apply (41) and (42) as follows.

Obviously,

EZ = P(n,2) E(Z|G (2) contains a matching)— — —

n

+ (1-P(n,2)) E(z|g (2) does not contain a matching) (47)— —

n

The second conditional expectation is bounded trivially by

2
aEa = 0(n ) (cf. (44)). The first conditional expectation

-n :n

is bounded by

nEF"'^(max {V_ , W„ })

.

(48)
-z :n -I :n

Hence it suffices to prove that

EF (max {¥„ , W } i o
, . . r -Z:n-^:n ,, i >z
lim mf > (1 - —, ,„ )

F ^(1/n) 2e^^^

1/2
To this end, define x =1 - (1-1/n) and note from (40) that

n

F~ (x ) = F~ (1/n) so that
n

(49)

-13-



EF-l(max {V„ , W }) <
-2:n -w:n

F (1/n) Pr {V„ < X , W„ < x } +
-2:n n -z:n n

E(F~l(max {V., , W }) I , , )
-2:n -2:n max tV„ , W. } a x (50)

-2:n -2:n n

To bound the first term, note that

P^ %:n^^n' ^2:n^^n^
=

,^n ,n, k ,. >n-k, 2
(I, „ (, ) X (1-x ) ) =
k=2 k n n

(1 - (1-x )" - nx (1-x )""^^ (51)
n n n

1/2 2
which tends to (1-3/ (2e )) as n->«°.

The second term in (50) is equal to

1

/ F-l(x)d(Pr{V. < x}^) =
— z :n

X
n

1 _ _2
2n(n-l) / F-l(x) Pr{V, < x} x(l-x)" dx (52)

-Z :n
x
n

1/2
After a transformation x=l-(l-y) (cf. (40)), we find that

(52) for large n is bounded by

n(n-l) / F ^y) (l-(l-y)^^^) (1-y)
^""^^

^^dy <

F(0)

n(n-l) (l-F(O))^''"^^^^ / F"^(y)dy, (53)

F(0)

thus completing the proof of (49). C

-14-



Again, the case that

liin^_^ F"^(l/n) = (54)

is much simpler to analyze.

Theorem 4 . (F defined on (0, o°)

)

If F is a function of positive decrease at 0, then

EZ EZ
< lim inf ^ lim sup (55)

nF ^(1/n) nF (1/n)

Proof. We have, for all d > 3, that

EZ < (1-P(n,d)) E(Z|G (d) does not contain a matching) +

+ P(n,d) E(z|g (d) does contain a matching)

2 2

< (d'^
-d-2^-d +d+4

_^ ^g-_i ^^^ ^^ J-d:n -a:n

As in (^19^), we use constants B, 3 > to bound

-d^+d+4, -1,,, . , ^ -d^+d+3+3 , , 1 u ^u ^n /nF (1/n) by Bn , and choose d such that

_2 - - -
-d +d+3+6<0. For this value d, we bound EF"! (max {V^ , W, }) as

-d:n -d:n

before by

d (-) / F-l(x) Pr{V- < x} (l-x)""V"^dx
\d/

Q
-d:n

These two bounding arguments yield that lim sup EZ/nF (1/n) < °o.

The lower bound on lim inf EZ/nF (1/n) follows from (46). C

The conditions of strict decrease on F turned out to be necessary as

well as sufficient to describe the asymptotic behavior of the smallest

order statistic (Theorems 1 and 2) that play an important role in the

above theorems. It can easily be seen that this condition is necessary

and sufficient in Theorem 4 as well, and one suspects that the same

holds for Theorem 3.



Theorems 3 and 4 capture the behavior of the expected LAP value for a

wide range of distributions. To derive almost sure convergence results

under the same mild conditions of F, the results from [Walkup 1981]

would have to be strengthened further. For special cases such as the

uniform distribution, however, almost sure results can indeed be

derived quite easily (see [Van Houweninge 1984]).
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